

Building a geological reference platform using sequence stratigraphy combined with geostatistical tools

Bernard BOURGINE, Éric LASSEUR, Aurélien LEYNET, Guillaume BADINIER, Valentin BOUCHET, Carole ORTEGA, Benoît ISSAUTIER (BRGM - France)

GeoEnv2014 & 2nd European meeting on 3D geological modelling, Edinburg

Overview

> Objective and context

The French Geological Reference platform

> Methodology for drill holes validation

> Results on two test areas

> Conclusion, perspectives

Objective of the work

> Set up a methodology for drill holes validation

- national drill holes database
- many drill holes :
 - - 800 000 ; >90 000 with a preliminary litho-stratigraphic interpretation
- reliability: very good to very low ... but unknown
- to be validated: main geological interfaces interpretation
- automatise the process of validation

Methodology for drill hole validation

> Step 1: Build a preliminary reference (set A)

- loose network of holes owning a well log (gamma ray)
- correlation of well logs using sequence stratigraphy
- accurate litho-stratigraphy interpretation
- geostat analysis
- preliminary 3D model

> Step 2: Test other drill holes (set B)

- B holes : unknown quality, unchecked reliability
- (cross) validation against reference set
- add validated
 B drill holes to reference set
 A
- iterate
- update 3D model

Reference holes

(set A)

3D Model

éosciences pour une Terre durable

Methodology for drill hole validation

> Step 1: Build a preliminary reference (set A)

- loose network of holes owning a well log (gamma ray)
- correlation of well logs using sequence stratigraphy
- accurate litho-stratigraphy interpretation
- geostat analysis
- preliminary 3D model

> Step 2: Test other drill holes (set \mathbb{B})

- B holes : unknown quality, unchecked reliability
- (cross) validation against reference set
- add validated \mathbb{B} drill holes to reference set \mathbb{A}
- iterate
- update 3D model

Reference holes

(set A)

3D

Model

Géosciences pour une Terre durable

, ted holes

Other holes

(set B)

Step 1: Build a preliminary reference set (A)

> select holes with well log

• Example Paris area: 168 holes among \gg 7 000 holes

120 km × 80 km area

Step 1: Build a preliminary reference set (A)

> Sequence stratigraphy correlation along transects

- surfaces (time-lines) corresponding to deposition context change
- restore sedimentary bodies geometry
- enables facies simulation within each body

Step 1: Build a preliminary reference set (A)

> Litho stratigraphic pile

• correct litho-stratigraphic surfaces deduced from sequence stratigraphy

Step 1: Geostatistical analysis of reference drill holes

> Top or Base of each formation of the « pile »

Step 2: Test other drill holes (\mathbb{B})

> Cross validation of \mathbb{B} against reference set (A)

- T_A = top of a formation on « A » holes (resp. T_B for « B » holes)
- estimate $T_{\mathbb{B}}$ from $T_{\mathbb{A}}$ only

kriging standard deviation

- compute $(T_{\mathbb{B}}^* T_{\mathbb{B}})$ and $(T_{\mathbb{B}}^* T_{\mathbb{B}})/\sigma_{\mathrm{K}} < \infty$
- holes with inequality constraint on $T_{\mathbb{B}}$ taken into account
- automatic maps and cross sections highlighting potential errors

Step 2: Test other drill holes (B)

> Validating drill holes « \mathbb{B} »

• consistent holes are validated automatically \Rightarrow added to set « A »

		Estimation error	
		$Low T^*_{\mathbb{B}} - T_{\mathbb{B}} $	High $ T^*_{\mathbb{B}} - T_{\mathbb{B}} $
Deviation to the model	$ T_{\mathbb{B}}^* - T_{\mathbb{B}} / \sigma_{\mathrm{K}} < 2$	hole $\mathbb B$ validated	hole $\mathbb B$ to be verified
	$ T_{\mathbb{B}}^* - T_{\mathbb{B}} / \sigma_{\mathrm{K}} > 2$	hole \mathbb{B} to be verified	hole $\mathbb B$ to be verified

- other holes: to be verified manually later
- iterate process

Step 2: Test other drill holes (set \mathbb{B})

> Holes to check manually

- outliers of cross validation, critical areas or formations
- kriging standard deviation map \rightarrow next candidate for validation

- \bullet Reference holes + already validated « $\mathbb B$ » holes
- « \mathbb{B} » holes waiting for validation

Step 2: Test other drill holes (B)

> 3D model from « A » + validated « B »

• \rightarrow cross sections and isopach maps \Rightarrow model verification

Methodology for drill hole validation

> Automatisation

- R-scripts and Isatis batch for methodology testing
- In-house software (GDM-MultiLayer) to be used by geologists
 - -data consistency verification
 - -geostat analysis
 - -cross validation,
 - -automatic 3D model building
 - -automatic maps and sections

Géosciences pour une Terre durable

North-aquitanian basin test zone

- 117 reference wells (set A) 10 formations
- 60 drill holes to be validated (set \mathbb{B}) for Toarcian :

Jurassic formation Carbonate ramp

Géosciences pour une Terre durable

Paris basin test zone

> Drill hole validation

- 7000 holes to be validated (set \mathbb{B}) 168 holes in reference set (A)
- « Champigny » formation : 137 holes tested in set \mathbb{B}
- 48% of holes automatically validated

Paris basin test zone

> Facies (plurigaussian) simulation

Assess overal interpretation

Overview

> Objective and context

• The French Geological Reference platform

> Methodology for drill holes validation

> Results on two test areas

Conclusion, perspectives

> Methodology for drill holes validation

- geological concepts + geostatistics basic tools
- helps finding quickly « good » drill holes and eliminating « bad » drill holes in a large dataset

> Semi automatic procedures

- time saving
- repeatability
- accessible to non geostatistician

> Perspectives

- improve automatisation
- what to do with non « auto-validated » holes ?
- assign a « quality index » to validated and non validated holes ?
- more facies simulation / 3D model

ensciences nour une Terre durable

Thank you for your attention !

