Coupling of GeoModeller and FEFLOW: A case study – Tunisian groundwater challenges addressed

Imen Hassen¹

with Helen Gibson² Fadoua Hamzaoui-Azaza François Negro Khanfir Rachid and Rachida Bouhlila

- 1 Laboratory of Modeling in Hydraulics and Environment (LMHE), National Engineering School of Tunis, University of Tunis El Manar, Tunisia
- ² Intrepid Geophysics, Brighton, Victoria 3186, Australia

Journal of Hydrology 539 (2016) 223-236

3D geological modeling of the Kasserine Aquifer System, Central Tunisia: New insights into aquifer-geometry and interconnections for a better assessment of groundwater resources

Imen Hassen^{a,*}, Helen Gibson^b, Fadoua Hamzaoui-Azaza^c, François Negro^d, Khanfir Rachid^e, Rachida Bouhlila^a

^a Laboratory of Modeling in Hydraulics and Environment (LMHE), National Engineering School of Tunis, University of Tunis El Manar, BP 37, Belvedere, 1002 Tunis, Tunisia ^b Intrepid Geophysics, Suite 110, 3 Male Street, Brighton, Victoria 3186, Australia

^c Research Unit of Geochemistry and Environmental Geology, Department of Geology, Faculty of Mathematical, Physical and Natural Sciences, University of Tunis El Manar, Tunis, Tunisia

^d CHYN (Centre of Hydrogeology and Geothermics), Neuchâtel University, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland

^e General Directorate of Water Resources, 43 Mannoubia Street, 1008 Tunis, Tunisia

Objective – rigorous groundwater resources assessment

GEOLOGICAL MODEL

- Consolidate and reconcile legacy data: all hydro-stratigraphic units of the KAS
- Build a verifiable 3D geological and structural model
- Honour primary geological observations

CONCEPTUAL MODEL

- Review characterisation of the aquifers
- View 3D locations of faults: compartments and connectivity
- Understand flow system including pathways, flow directions & springs
- Calculate aquifer volumetrics and estimate reserves

HYDROLOGICAL MODEL

- Export the model as a fem mesh for numerical simulation in FELOW
- This final modelling phase is not presented today **in press*

Implicit 3D geological/structural model (KAS)

4th European meeting on 3D geological modelling

Choice of GeoModeller software

- Can successfully model sparse geological contact observations (coupling structural data)
- Can constrain 3D geology from surface, with only shallow borehole data (or no drilling)
- Can employ a rules-based modelling approach: (a) relationships of the stratigraphic pile, and
 (b) chronological relationships of the fault network

 are also employed as constraints of the model
- Needed to easily edit and re-compute for an updated model (when more data available)

Future Considerations for the 3D model

- Needed seamless inter-operability with FEFLOW
- 2D/3D workspace to support multi-geophysics integration eg.,. add airborne EM, seismic, perform forward modelling of grav/mag direct from the 3D geology (a verification step)

GeoModeller - Potential field method of interpolation

<u>3D implicit surfaces</u> constrained by contacts & structural data *together*

- "co-kriging" Lajaunie et al. 1997
- a mathematical model
- contacts belong to iso-potential surfaces of a 3D scalar field
- dips are treated as gradients of the field
- 3D fault surfaces are solved same way (add discontinuous drift functions)

4th European meeting on 3D geological modelling

Data to build the KAS model

Data	Source	Note		
Elevation	USGS	Digital elevation map		
	The National Office of Mine	Geological map of Feriana (1932) (scale 1:200000)		
	Directorate of Trade, engineering and	Geological map of Tunisia (1958) (Scale 1:500000)		
Geology	industry, Geological survey of Algeria	Geological map of Algeria (1952) (scale 1:500000)		
	Khanfir	Geological map of Oum Ali-Thelepte (1980) (scale 1:200000)		
	Khanfir	3 cross-sections (1980, 1983)		
	General Management of Water Resources (DGRE)			
Well logs	Regional Commission of Agricultural Development of Kasserine (CRDA)	173 bores (<u>47</u> used in the model)		
	Tunisian National Oil Company (ETAP)			

Steps to build the KAS model

Merge some, but keep important hydro-stratigraphic units

Plio-Quaternary
Upper Miocene
Middle Miocene
Sandstone
Lower Miocene
Aquitanian
Cretaceous

- Geo-locate map images in the 3D workspace
- Digitize geological boundaries (contact points)
- Add dip/dip-direction data

Unify stratigraphic classification region-wide

Steps to build the KAS model

- Load most representative, deepest bores (only 47 of 173)
- Deepest is 500 m

Steps to build the KAS model

- Geo-locate interpreted cross-section
- Digitise the contacts and dips
- Compute & render the 3D model to 2D
 check the fit

Review characterisation of the aquifers

From previous literature:

KAS comprises 5 hydrogeological units: 3 main aquifers, 2 interlayered aquitards

Surficial exposure:

Up-gradient aquifer system (west) = comprises mid-Miocene sandstones (10-300 m), is **unconfined**

Down-gradient system (central-east) = comprises Mio-Pliocene marls >400 m thick, hence the MM aquifer is **confined** here

Plio-Quaternary	Aquifer	
Mio-Pliocene	Aquitard	
Middle Miocene sandstone	Aquifer	
Lower Miocene	Aquitard	
Creteaceous (Abiod)	Aquifer	
Basement	Basement	

Review & revise: pathways and connectivity

Review & revise: pathways and connectivity

no springs in the west, where Lower Miocene aquitard (red clay) unit exists extensively
 & hence the two older aquifers are proposed as *connected* east of here

Lower Miocene-Aquitanian red-clays

Modelled metrics of the Kasserine Aquifer System

Lithology	Mapped and Modelled units		Reserve (geology volume) GeoModeller (m3)	% of the total model volume	*Resources (m3)	
Alluviums,sands, sandstones, gravels, silts and sandy-clays	Plio-Quaternary	Aquifer	7x 10 ¹⁰	2.2 %	7x 10 ⁷ to 35x 10 ⁷	
Conglomerate, clay, sandstone	Mio-Pliocene	Aquitard				
sand and sandstone with intercalated green and grey marl in the shallower sequences	Middle Miocene sandstone	Aquifer	1x 10 ¹²	16 %	11x 10 ⁹ to 55x 10 ⁹	
clay, sandstone	Lower Miocene red clay	Aquitard				
Hilatus						
dolomitic limestone	Creteaceous limestones	Aquifer	5.9x 10 ¹²	55 %		
thick mar, interbeddedwith thin limestone	hick mar, interbeddedwith thin limestone			*based on porosities and		
dolomite and claystone	storage coefficient estimat					
dolomite and claystone				A REAL PROPERTY AND		
thin clay and marl interbedded with limestone and dolomite						

GEOPHYSICS

4th European meeting on 3D geological modelling

Further possible new findings:

Dual nature of faults - acting both as barriers to horizontal groundwater flow, and simultaneously as conduits for vertical flow

Two flow directions may occur within the KAS, at a small syncline near Feriana

The KAS hydrological model – in 2017 Coupling GeoModeller and FEFLOW

Used GeoModeller's "Fill centroids" menu

Add geology-identity to each element, of a pre-created mesh

New possibilities ! GeoModeller v4

GeoModeller direct export:

EOPHYSI

3-way attributed, adaptive, layered finite element meshes

- 1) Rock type
- 2) Dip & Azimuth of the bedding orientation (contributing to anisotropic flow information)

New possibilities ! GeoModeller v4

GeoModeller direct export: Fully unstructured finite element meshes Supported by CGAL libraries for tetrahedral & triangulated meshing

- user-controls for adaptive mesh (coarse or fine per geology unit)
- Water tight & manifold
- thin bodies, pinch outs, dipping faults, limited faults

Acknowledgements to my co-authors:

Imen Hassen Fadoua Hamzaoui-Azaza FranÇois Negro Khanfir Rachid

Thank you Helen Gibson

helen@intrepid-geophysics.com

