

Geoscience for our changing Earth

Workshop on 3D geological modelling methodologies: an overview of activities in BGS

TNO, Utrecht 17 – 18 September 2013

Andy Kingdon

Team Leader: Parameterisation and Statistics

British Geological Survey

aki@bgs.ac.uk

+44 115 936 3415

BGS and 3D modelling

- This is a brief overview of the multiple strands of 3D modelling within BGS from ingestion of data to final model delivery
 - Some of these activities are complete and have been delivered to our end-users
 - Some are still research activities undertaken within BGS for our own needs
- The following presentation is complex because so is the role of 3D within our work

BGS representatives at this meeting Expertise from across BGS modelling science

- Rachel Dearden Development of products & delivery
 - Knowledge exchange for model outputs
- Holger Kessler Team Leader: Geological Modelling Systems
 - Delivery of 3D modelling technology and methodology
 - Andy Kingdon Team Leader: Parameterisation & Statistics
 - Stochastic modelling / subsurface property attribution
 - Murray Lark Environmental Statistician
 - Model uncertainty / statistical variability of property
- Bruce Napier Team Leader: Visualisation Systems
 - Visualising geological information in 3D
- Martin Nayembil Data Architect / Oracle developer
 - Tools and infrastructures for manipulating geodata
- Paul Williamson GOCAD & statistical modeller
 - Creation of 3D property models, algorithm development

BGS representatives at this meeting Expertise from across BGS modelling science

- Diarmad Campbell
 - Chief Geologist Scotland / project leader "Clyde Urban Super Project"
- Katie Whitbeard
 - Geological mapping and 3D modelling in Scotland and Northern England

Glasgow in Scotland is increasingly an exemplar of the application of 3D modelling to the study of complex urban geology

Data tools & Architecture

- Planned SAN storage for specialised datasets or
- Data holdings stored either within a RDBMS (Oracle 10g®)
- Maintain the integrity of the database designs and data held within them using business rules, standards, dictionaries and good design practices.
 - Ensures co-ordinated data management and data consistency
 - Data centralised for concurrent access by all
 - Structured data for querying
 - Uniqueness / security / auditing / traceability
- Issues: But also project datasets distributed across project websites requiring a corporate solution
- New Requirement: Denormalisation tables/tools provide simplified access for users to provide data within BGS from parameterised 3D models and ultimately to users outside BGS

Data Architecture: Component Parts

Geological Models ("3D maps")

knowledge at the British Geological Survey using GSI3D software and methodology. Computers & Geosciences, 35,

GB3D National Bedrock Model 2009-13

Uses:

- Public understanding of science by DECC.
- EA risk to aquifers from shale gas
- BGS regional guide

© NERC All rights reserved

Thames catchment groundwater model

Statistics

- Funded by EA (£150K) plus BGS
- 121 sections,
- 22,000 line km
- Sections 1.5-5.5 km depth
- Built in GSI3D by 15 regional geologists supported by data managers
- Released on BGS website in 6 formats incl Petrel and GOCAD/Skua to base Pridoli
- Accompanied by a metadata report,
- DOI has been minted
- Methodology paper is in press with the open access Geoscience Data Journal

GB3D: Multi-scale modelling

STRATIGRAPHIC UNITS FAULTS

Glasgow Modelling: Deterministic vs. Stochastic

Probability of sand occurrence: 50 realisations

p sand

In

Property Modelling: Bulk density

© NERC All rights reserved

Model error

Modelling Uncertainty Assessment

Current questions:

- What controls the uncertainty of interpretations along cross-sections?
- How does this uncertainty propagate on interpolation to 3-D volumes?
- 3. Can expert elicitation provide meaningful quantitative information where data are sparse?

Visualisation Technologies

138.41

lisionary - 2.0.0.0 - C:\Users\bm\Desktop\G8.gvz 90 - 0 0 0 0 0

- * * 🖸 🗧 🗧

FPS: 128.71, MTPS: 21.14

00000.0000

FPS: 66.90, MTPS: 27.69

rd\CLEVELAND_BASIN_Feb_2011_del_lines_2.gv;

🏛 🔽 🥞 参 ン 正 ン ク 谷 石 🔹 🤤 合 😒 😓 🖉 🗸 ジ 木 水

3D model data delivery

• Short-term aims

- Commercialise web delivery of *approved* 3D geological models:
 - Using Groundhog for synthetic boreholes & vertical & horizontal cross sections
 - Via 2D grids for top and base surfaces and thicknesses

Long-term aims in model provision

- Provision of 3D geological models within which users can:
 - Add data
 - Edit surfaces (via modifications to cross sections for example)
- Aspiration to enable external model users to submit revised interpretations to BGS
- BGS role to quality assurance and check externally generated line work.

Issues to resolve

- Solving the confidential data problem, so that models can be delivered with raw (borehole) data?
- Educating end-users about how to use and update models
- Indicating model uncertainty in a meaningful way
- Maps and models: keep them in sync. or let them diverge?

Issues:

- Model Management:
 - Versioning, reproducibility and storing models
- Data capture and serving input data
- Modelling type to be used?
 - When is data sufficient to allow stochastic modelling?
 - When to use deterministic / stochastic / stochastic with layers?
- Managing uncertainty
 - Calculating and expressing uncertainty studies
- Availability of skills
- Integration of all of these activities as a coherent whole
- Delivering meaningful, usable outputs within and outside BGS
- Making models repeatable and defendable